Mycosporine-like amino acids from coral dinoflagellates.
نویسندگان
چکیده
Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA synthesis, illustrates the diversity of MAA functions, and opens new perspectives for future applications of MAAs in biotechnology.
منابع مشابه
Survey of ultraviolet radiation-absorbing mycosporine-like amino acids in organs of coral reef holothuroids*
Twelve deposit-feeding species of tropical holothuroid echinoderms (families Holothuriidae and Stichopodidae) were surveyed for the presence of UV-absorbing mycosporine-like amino acids (MAAs) during Austral summer at Hicks Reef, Great Barrier Reef (GBR). An additional species belonging to the Synaptidae was collected in Austral winter from Shrimp Reef, GBR. Tissues of all species contained MAA...
متن کاملMycosporine-like amino acid content in four species of sea anemones in the genus Anthopleura reflects phylogenetic but not environmental or symbiotic relationships.
We examine the occurrence of UV-absorbing, mycosporine-like amino acids (MAAs) in four sympatric species of sea anemones in the genus Anthopleura, all collected from intertidal habitats on the Pacific Coast of temperate North America. We compare patterns of MAAs in A. elegantissima of several types: specimens having predominately zooxanthellae (dinoflagellates comprising at least two species) o...
متن کاملThe synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates.
We tested the hypothesis that there is a relation between phylotypes (phylogenetic types, as determined by restriction fragment length polymorphism (RFLP) and partial sequence analysis of the small subunit ribosomal RNA gene (SSUrDNA)) and the synthesis of mycosporine-like amino acids (MAAs) by symbiotic dinoflagellates under the influence of ultraviolet radiation (UV-B/A) and photosyntheticall...
متن کاملPackaging of mycosporine-like amino acids in dinoflagellates
Synthesis of mycosporine-like amino acids (MAAs) can significantly protect phytoplankton cells against damaging ultraviolet (UV) radiation, depending on the concentration, type and cellular distribution of these UV sunscreens. We addressed the hypothesis that MAAs are concentrated around UV-sensitive organelles for improved efficiency, thereby increasing their ‘package effect’. This was investi...
متن کاملMycosporine-Like Amino Acids and Marine Toxins - The Common and the Different
Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substitue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 77 24 شماره
صفحات -
تاریخ انتشار 2011